skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Melandri, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The existence of a secondary (in addition to compact object mergers) source of heavy element (r-process) nucleosynthesis, the core-collapse of rapidly rotating and highly magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature ofr-process enrichment, a late-time (≳40 days post-burst) distinct red color, in observations of gamma-ray burst supernovae (GRB-SNe), which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe atz≲ 0.4, extending out to >500 days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D, and 130427A are consistent with both no enrichment and producing 0.01–0.15Mofr-process material if there is a low amount of mixing between the innerr-process ejecta and outer supernova (SN) layers. GRB 190829A is not consistent with any models withr-process enrichment ≥0.01M. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due tor-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuringr-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution ofr-process produced by GRB-SNe. 
    more » « less
  2. We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN 2018jmt and SN 2019cj. Their light curves have rise times of about ten days, reaching an absolute peak magnitude ofMg(SN 2018jmt) = −19.07 ± 0.37 andMV(SN 2019cj) = −18.94 ± 0.19 mag, respectively. The early-time spectra of SN 2018jmt are dominated by a blue continuum, accompanied by narrow (600−1000 km s−1) He Ilines with the P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN 2019cj show flash ionisation emission lines of C III, N III, and He IIsuperposed on a blue continuum. These features disappear after a few days, and then the spectra of SN 2019cj evolve similarly to those of SN 2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We modelled the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either what is expected for a canonical SN Ib (∼2 M) or for a massive Wolf Rayet star (> ∼4 M), with the kinetic energy on the order of 1051erg. The lower limit on the ejecta mass (> ∼2 M) argues against a scenario involving a relatively low-mass progenitor (e.g.MZAMS ∼ 10 M). We set a conservative upper limit of ∼0.1 Mfor the56Ni masses in both SNe. From the light curve modelling, we determined a two-zone CSM distribution, with an inner, flat CSM component and an outer CSM with a steeper density profile. The physical properties of SN 2018jmt and SN 2019cj are consistent with those expected from the core collapse of relatively massive envelope-stripped stars. 
    more » « less
  3. Abstract We report the discovery of the unusually bright long-duration gamma-ray burst (GRB), GRB 221009A, as observed by the Neil Gehrels Swift Observatory (Swift), Monitor of All-sky X-ray Image, and Neutron Star Interior Composition Explorer Mission. This energetic GRB was located relatively nearby ( z = 0.151), allowing for sustained observations of the afterglow. The large X-ray luminosity and low Galactic latitude ( b = 4.°3) make GRB 221009A a powerful probe of dust in the Milky Way. Using echo tomography, we map the line-of-sight dust distribution and find evidence for significant column densities at large distances (≳10 kpc). We present analysis of the light curves and spectra at X-ray and UV–optical wavelengths, and find that the X-ray afterglow of GRB 221009A is more than an order of magnitude brighter at T 0 + 4.5 ks than that from any previous GRB observed by Swift. In its rest frame, GRB 221009A is at the high end of the afterglow luminosity distribution, but not uniquely so. In a simulation of randomly generated bursts, only 1 in 10 4 long GRBs were as energetic as GRB 221009A; such a large E γ ,iso implies a narrow jet structure, but the afterglow light curve is inconsistent with simple top-hat jet models. Using the sample of Swift GRBs with redshifts, we estimate that GRBs as energetic and nearby as GRB 221009A occur at a rate of ≲1 per 1000 yr—making this a truly remarkable opportunity unlikely to be repeated in our lifetime. 
    more » « less
  4. Abstract We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6–5.5 micron) and Mid-Infrared Instrument (5–12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν − β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. 
    more » « less
  5. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less